
RSE2107A - Lecture 5
ROS Navigation Part 1



Navigation stack
01

Localisation
02

Agenda

Planners
03







Navigation 
Stack



Map Based Navigation

● Robot Navigation 

○ Where is the robot?

■ Localisation: helps the robot know its location

○ Where is the robot going?

■ Mapping: robot requires a map of its environment to know where it has 

been moving around thus far

○ How does the robot get there?

■ Motion/Path planning: goal of robot needs to be well defined for the 

robot to understand 



Navigation in ROS

● Three packages that ROS has in the Navigation Stack

○ gmapping

■ create maps using laser scan data

○ amcl

■ responsible for localisation using existing map

○ move_base

■ allows robot to navigate and move to a goal pose with 

respect to a given reference frame 



Localisation



What is localisation?

● The process of determining where a mobile robot is located with 

respect to its environment.

● The knowledge of the robot’s location is important for making 

decisions about its navigation path.

● ROS offers the AMCL localisation package. 



AMCL

● Adaptive Monte Carlo Localisation.

● Probabilistic localisation system for robot moving in 2D space.

○ Predicts possible locations of robot based on map information 

and sensor data.



AMCL node

● Requires a generated map before it can be used.

● Subscribes to 

○ data of the laser via the topic /scan.

○ laser-based map via the topic /map.

○ transformation of the robot via the topic /tf.

● Publishes the estimated positions of the robot in the map via

○ /amcl_pose

○ /particle_cloud



AMCL node

● Services provided

○ global_localization(std_srvs/Empty)

■ Takes no arguments

■ Initiate global localization by dispersing particles randomly 

throughout the free spaces in the map.

● Services called

○ static_map(nav_msgs/GetMap)

■ This service can be called to retrieve the map.



Setting up the amcl node

● General parameters

○ odom_model_type (default: “diff”)

■ Depends on the robot. Can be diff, omni, diff-corrected, etc.

○ odom_frame_id: default (“odom”)

■ Which frame to use for odometry.

○ base_frame_id (default: “base_link”)

■ Which frame to use for robot base.

○ global_frame_id (default: “map”)

■ Name of the coordinate frame published by localisation system.



move_base



move_base node

● Allows movement of robot to desired location using navigation stack

○ recovery behaviours

○ global planner

○ local planner

○ global costmap

○ local costmap

● Subscribed topic:

○ move_base_simple/goal

● Published topic:

○ cmd_vel



move_base recovery behaviours

● When robot perceives itself as stuck, the move_base node will try to do the following:

○ Clearing of obstacle outside of user specified region in the map and perform in-

place rotation to clear out space

○ [failed] robot will move more aggressively to clear its map, and try to rotate in-

place again

○ [failed again] it will deem goal as not feasible



What are Costmaps

● Costmap is a grid map where each cell is assigned a specific cost. 

The cost represents the “difficulty” in traversing through different 

areas of the map.



Types of Costmaps

● Global costmap

○ Generated using data from static map.

○ Inflates the lines on the map.

○ Used by global planner to generate route.

● Local costmap

○ Generated using data from sensors (Eg Lidar, Ultrasonic)

○ Used by local planner to detect obstacles and plans path to 

avoid obstacle collision.



ROS costmap package

● Subscribes to

○ ~<name>/footprint (geometry_msgs/Polygon)

■ Specifies the footprint of the robot.

● Publishes to 

○ ~<name>/costmap (nav_msgs/OccupancyGrid)

■ Values in the costmap

○ ~<name>/costmap_updates (map_msgs/OccupancyGridUpdate)

■ The value of the updated area of the costmap.



ROS costmap package

● Costmaps consist of multiple layers. The most important layers are:

○ Static Map Layer

■ Represents the part of the costmap that is generally fixed, 

like those generated from using SLAM (Lab 4).

○ Obstacle Map layer

■ Tracks obstacles based on data received from sensor data.

○ Inflation Layer



Inflation Layer

● Each cell in the costmap can either be free, occupied or unknown.

● The inflation layer allocates cost values for each cell from 0 to 254. 

Where the cost value decreases with distance from the obstacle.

● There are 5 defined stages for costmap values:

1. Lethal

● Actual obstacle exists within the cell.



Inflation Layer

2. Inscribed

● Cell is less than the inscribed radius of the robot from obstacle. 

Definite collision if the robot is within the cell.

3. Possibly circumscribed

● The cell is more than the circumscribed radius of the robot. 

Collision may not be imminent and maybe dependent on orientation 

of robot.



Inflation Layer

4. Freespace

● No obstacle, robot should be free to move there.

5. Unknown

● No cost information available about a given cell.



Types of planners

Global Planner Local Planner

uses a prior information (from mapping) of 

the environment to create best possible 

path

transforms the global path to suitable 

waypoints, while taking into consideration 

of dynamic obstacles and vehicle 

constraints

● Global planner will plan a global path around existing and new obstacles (specified 

by planner_frequency parameter). 

● Local planner will do obstacle avoidance (where cmd_vel is produced and based of 

controller_frequency parameter), and try to follow global plan closely (taking into 

consideration a part of the global planner at a time)



Global Planners

● navfn

○ grid based global planner 

using Dijkstra’s algorithm

● global_planner

○ flexible replacement of navfn

■ supports A* 

■ can use grid path

A* Path Grid Path

Dijkstra PathStandard Behaviour



Global Planners

● carrot_planner

○ checks if goal is an 

obstacle

■ if yes: moves goal back 

along vector between 

robot and goal

■ if no: passes goal point 

as plan to local planner

New Goal

Original Goal

Wall



Local Planners

● base_local_planner

○ Implementation of DWA and trajectory rollout approach

● dwa_local_planner

○ More flexible and modular compared to base_local_planner’s DWA implementation

● eband_local_planner

○ Elastic Band method

● teb_local_planner

○ Timed-Elastic-Band method

● mpc_local_planner

○ Model predictive control approaches



limo_bringup 

● Specifying which planners to use under …/limo_bringup/launch folder, within the 

limo_navigation_diff.launch file: 

○ Global Planner: global_planner

○ Local Planner: base_local_planner



limo_bringup 

● Parameters used for the different Planners

○ File with the parameters is in the param folder under the …/param/diff/planner.yaml file

○ To avoid confusion: Navfn can be seen in the file, but we are using global_planner so those lines 

under Navfn ROS will not be part of the robot’s planning

○ global_planner will use its default parameters since it is not specified within the .yaml file

● Further readings: http://wiki.ros.org/base_local_planner ; http://wiki.ros.org/global_planner#Parameters

base_local_planner

Navfn (Not used)

Parameters

http://wiki.ros.org/base_local_planner
http://wiki.ros.org/global_planner#Parameters


Trajectory Tuning

● Cost Function to score each trajectory

○ pdist_scale (path distance bias): weighing for how much controller should stay within 

given path

○ gdist_scale (goal distance bias): weighing for how much controller should attempt to 

reach its local goal (controls speed as well)

○ occdist_scale: weighing on how much controller should avoid obstacles

● Further readings: http://wiki.ros.org/navigation/Tutorials/Navigation%20Tuning%20Guide

Trajectory scoring parameters in planner.yaml

http://wiki.ros.org/navigation/Tutorials/Navigation%20Tuning%20Guide


Cost Function

Trying to stay within path Steering from path and attempting to reach goal Changing path and trying 

to stay within new path

Original Path


