Weston Robot

RSE2107A - Lecture b

ROS Navigation Part 1

Weston Robot
Agenda

O] 02 K

Navigation stack Localisation Planners

Weston Robot

Navigation
Stack

Weston Robot

Map Based Navigation

e Robot Navigation
o Where is the robot?
m Localisation: helps the robot know its location
o Where is the robot going?
m Mapping: robot requires a map of its environment to know where it has
been moving around thus far
o How does the robot get there?
m Motion/Path planning: goal of robot needs to be well defined for the
robot to understand

Weston Robot

Navigation in ROS

e Three packages that ROS has in the Navigation Stack
o gmapping
m create maps using laser scan data
o amcl
m responsible for localisation using existing map
o move_ base
= allows robot to navigate and move to a goal pose with
respect to a given reference frame

Weston Robot

Localisation

Weston Robot

What Is localisation?

e The process of determining where a mobile robot is located with
respect to its environment.

e The knowledge of the robot’s location is important for making
decisions about its navigation path.

e ROS offers the AMCL localisation package.

Weston Robot

AMCL

e Adaptive Monte Carlo Localisation.
e Probabilistic localisation system for robot moving in 2D space.

o Predicts possible locations of robot based on map information

and sensor data.

" Weston Robot

- AMCL node x

e Requires a generated map before it can be used.

e Subscribes to
o data of the laser via the topic /scan.
o laser-based map via the topic /map.
o transformation of the robot via the topic /if.
5 e Publishes the estimated positions of the robot in the map via

o [amcl _pose
o /[particle_cloud

X

" Weston Robot

- AMCL node x

~“~ e Services provided
o global localization(std_srvs/Empty)
m Takes no arguments
m Initiate global localization by dispersing particles randomly
throughout the free spaces in the map.
5 e Services called

o static_map(nav_msgs/GetMap)
m This service can be called to retrieve the map.

X

" Weston Robot
Settlng up the amcl node X

e General parameters
o odom_model type (default: “diff”)
m Depends on the robot. Can be diff, omni, diff-corrected, etc.
o odom_frame id: default ("odom?)
m Which frame to use for odometry.
o base frame_id (default: “base_link”)
D, m Which frame to use for robot base.
o global frame id (default: “map”)
m Name of the coordinate frame published by localisation system.

X
VU aVaVal

Weston Robot

move _base

Weston Robot

move base node

e Allows movement of robot to desired location using navigation stack

©)

©)

©)

@)

©)

recovery behaviours
global planner

local planner

global costmap
local costmap

e Subscribed topic:

©)

move base simple/goal

e Published topic:

©)

cmd_vel

"move_base_simple/goal”
geometry_msgs/PoseStamped

move_base

AMCL global_planner lobal_costmap

| Sensor sensor
| Transform . Tecovery_behaviors solrces

map_server

Odo \
Odometry local_planner
o -

"cmd_vel” geometry_msg/Twist O provided node

O optional provided node
base controller O plataform specific node

Weston Robot

move base recovery behaviours

e \When robot perceives itself as stuck, the move_base node will try to do the following:
o Clearing of obstacle outside of user specified region in the map and perform in-
place rotation to clear out space
o [failed] robot will move more aggressively to clear its map, and try to rotate in-
place again

o [failed again] it will deem goal as not feasible
nove ase Default Recovery Behaviors
stuck stuck

— ~_stuck T - _ T
Conservative Clearing \ Aggressive) Clear!ng
. Reset / _ Rotation / . Reset _ Rotation /

clear clear clear_-

stuck

S
™~

~—_ ([Navigating) Aborted
stuck vigating) ©

Weston Robot

What are Costmaps

e Costmap is a grid map where each cell is assigned a specific cost.
The cost represents the “difficulty” in traversing through different

areas of the map.

. A " Weston Robot
Types of Costmaps x
“~ e Global costmap
o Generated using data from static map.
o Inflates the lines on the map.
o Used by global planner to generate route.
e Local costmap
¥ o Generated using data from sensors (Eg Lidar, Ultrasonic)
o Used by local planner to detect obstacles and plans path to

avoid obstacle collision.
X

555 N " Weston Robot
ROS costmap package x
“~ e Subscribes to
o ~<name>/footprint (geometry _msgs/Polygon)
m Specifies the footprint of the robot.
e Publishes to
o ~<name>/costmap (hav_msgs/OccupancyGrid)
m Values in the costmap
o ~<name>/costmap_updates (map_msgs/OccupancyGridUpdate)

o xThe value of the updated area of the costmap.

. N " Weston Robot
ROS costmap package x
7~ e Costmaps consist of multiple layers. The most important layers are:
o Static Map Layer
m Represents the part of the costmap that is generally fixed,
like those generated from using SLAM (Lab 4).
o Obstacle Map layer
m Tracks obstacles based on data received from sensor data.

o Inflation Layer

X

355 AN "~ Weston Robot
Inflation Layer x

“~ e Each cell in the costmap can either be free, occupied or unknown.

e The inflation layer allocates cost values for each cell from 0 to 254.
Where the cost value decreases with distance from the obstacle.
e There are 5 defined stages for costmap values:
1. Lethal

e Actual obstacle exists within the cell.

Weston Robot

Inflation Layer

2. Inscribed
e Cellis less than the inscribed radius of the robot from obstacle.
Definite collision if the robot is within the cell.
3. Possibly circumscribed
e The cell is more than the circumscribed radius of the robot.
Collision may not be imminent and maybe dependent on orientation

of robot.

Inscribed Circumscribed

. AAA "~ Weston Robot
Inflation Layer x

N\ 4. Freespace

e NoO obstacle, robot should be free to move there.

5. Unknown

e No cost information available about a given cell.

Weston Robot

Types of planners

Global Planner Local Planner

uses a prior information (from mapping) of | transforms the global path to suitable

the environment to create best possible waypoints, while taking into consideration
path of dynamic obstacles and vehicle
constraints

e Global planner will plan a global path around existing and new obstacles (specified
by planner_frequency parameter).

e Local planner will do obstacle avoidance (where cmd_vel is produced and based of
controller_frequency parameter), and try to follow global plan closely (taking into
consideration a part of the global planner at a time)

N RN ““Weston Robot
Global Planners x

Y~ e navfn =
o grid based global planner sEEE— L
using Dijkstra’s algorithm - : ; #
e global planner .
_ Standard Behaviour Dijkstra Path
o flexible replacement of navfn ...
) m Ssupports A*
m can use grid path
X A* Path Grid Path

AU aVaVal

. N ' Weston Robot
Global Planners x

"\

o carrot_planner
o checks if goal is an A

Original Goal

obstacle
m if yes: moves goal back

New Goal

along vector between
D robot and goal
m if no: passes goal point
as plan to local planner

Weston Robot

| ocal Planners

e base local planner
o Implementation of DWA and trajectory rollout approach
. dwa_local planner
o More flexible and modular compared to base local_planner's DWA implementation
. eband_local planner
o Elastic Band method
. teb local planner
o Timed-Elastic-Band method
« mpc_local planner
o Model predictive control approaches

limo_bringup

e Specifying which planners to use under

limo_navigation_diff.launch file:

(@)

@)

Global Planner: global_planner

Local Planner: base_local_plan

<l--

Weston Robot

ner

wERwREEERERS RS Nayigation FREEREERERREEE

<node pkg="move_base" type="move_base" Iespawn="false" name="move_base" output="screen">

<rosparam file="$(find 1limo_bringup)/param/diff/costmap_common_params.yaml" command="load" ns="global_costmap” />
<rosparam file="$(find limo_bringup)/param/diff/costmap_common_params.yaml" command="load" ns="local_costmap" />

<rosparam file="$(find 1limo_bringup)/param/diff/local_costmap_params.yaml" command="load" />
<rosparam file="$(find 1limo_bringup)/param/diff/global_costmap_params.yaml" command="load" />
<rosparam file="$(find limo_bringup)/param/diff/planner.yaml" command="load" />

<param name="base_global planner" value="global planner/GlobalPlanner" /> |
<param name="planner_frequency” value="1.@" />

<param name="planner patience" value="5.@" />
<param name="base_local_planner" value="base_local_ planner/TrajectoryPlannerrR0Os" ﬂ)l
<paIram name= (On(IOLlEIﬁTIEqUEﬂEy value="5.8" /

<param name="controller_ patience" value="15.@" />
<param name="clearing_rotation_allowed" value="true" />

</node>

.../limo__bringup/launch folder, within the

limo_bringup

Parameters used for the different Planners

@)

O

O

under Navfn ROS will not be part of the robot’s planning

Weston Robot

File with the parameters is in the param folder under the .../param/diff/planner.yaml file

To avoid confusion: Navfn can be seen in the file, but we are using global_planner so those lines

global_planner will use its default parameters since it is not specified within the .yaml file

Further readings: http://wiki.ros.org/base_local_planner ; http://wiki.ros.org/global_planner#Parameters

Navfn (Not used)

base_local_planner

Parameters

min_in_place_vel theta: ©.2
holonomic_robot: false
escape_vel: -@.1

controller frequency: 5.0

Tecovery behaviour_enabled: true

NavfnROS

allow_unknown: true # Specifies whether or not to allow navfn to create plans that traverse unknown space.

default_tolerance: .1 # A tolerance on the goal point for the planner.

TrajectoryPlannerRos |

Robot Configuration Parameters
acc_lim x: 2.5
acc_lim_theta: 3.2

max_vel x: 0.6
min_vel x: 0.0

max_vel_theta: 1.0
min_vel theta: -1.@

Goal Tolerance Parameters
yaw_goal_tolerance: @.15
xy_goal_tolerance: 0.2
latch_xy goal_tolerance: false

http://wiki.ros.org/base_local_planner
http://wiki.ros.org/global_planner#Parameters

Weston Robot

Trajectory Tuning

e Cost Function to score each trajectory

@)

O

given path

pdist_scale (path distance bias): weighing for how much controller should stay within

gdist_scale (goal distance bias): weighing for how much controller should attempt to
reach its local goal (controls speed as well)

occdist_scale: weighing on how much controller should avoid obstacles

e Further readings: http://wiki.ros.org/navigation/Tutorials/Navigation%20Tuning%20Guide

Trajectory scoring parameters

meter scoring: true # whether the gdist_: scale and pdist_scale parameters should assume that goal distance and path_distance are expressed in units of meters or cells.
o t_scale: @.1 #The weighting for how much the controller should attempt to avoid obstacles. default @.01

pdist_scale: 2.5 # The welghtlng for how much the cont:folle:f should stay cluse to the path it was given . default 0.6

gdist_scale: 1.0 # The weighting for how much the controller should attempt to reach its local goal, also controls speed default ©.8

heading_lookahead: ©.325 #How far to look ahead in meters when scoring different in—pl ce-Totation trajectories

heading_scor: alse #Whether to score based on the b t's heading to the path or its distance from the path. default false

heading_scor: imestep: 0. B #How far to look ahead in time in seconds along the simulated trajectory when using heading scoring (double, default: @.8)

dwa to e Dynamic Window Approach (DWA), or whether to use Tra] t Ty Rollout

simple_attracto
publish_cost_gri d p tru

Trajectory scoring parameters in planner.yaml

http://wiki.ros.org/navigation/Tutorials/Navigation%20Tuning%20Guide

Weston Robot

Cost Function

path_distance_bias # (distance(imn) to path from the endpoint of the trajectory)

goal_distance_bias # (distance(m) to local goal from the endpoint of the trajectory)

occdist_scale * (maximun obstacle cost along the trajectory in obstacle cost (0-254))

Original Path

Trying to stay within path Steering from path and attempting to reach goal Changing path and trying
to stay within new path

